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Global warming is rapidly reducing Arctic summer sea-ice extent, leading to increasing possibilities for Arctic shipping. Safe navigation under harsh Arctic conditions requires accurate short-term forecasts of sea-ice motion, which in part depend on reliable ocean current predictions. We present a hybrid data-
assimilation framework that integrates a Fourier Neural Operator (FNO) with a nudging correction step: at each time step, the FNO forecasts the flow field, then a small nudging term pulls the forecast toward the latest observations, maintaining physical consistency. We tested our method on data from a quasi-
geostrophic model, a simplified representation of large-scale ocean circulation. In benchmark experiments, our FNO-nudging system shows only a 4 % loss in accuracy compared to classical solvers but runs orders of magnitude faster, making real-time sea-ice trajectory forecasting and thus safer Arctic

navigation, practically achievable.

Motivation
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The new Arctic sea routes [1]

As new Arctic routes open, navigating through harsh ice conditions demands reliable
forecasts of ice movement to adjust ship trajectories. To address this problem, we propose
a data-assimilation framework that fuses observational data (e.g., satellite measurements)
with model forecasts. Traditional physical solvers for ocean dynamics are too slow for real-
time use, so we replace them with a Fourier neural operator - a fast, data-driven neural
network that learns flow patterns. This hybrid approach delivers velocity estimates
hundreds of times faster than classic solvers, enabling real-time predictions.
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Quasi-Geostrophic (QG) [2] model equations to emulate the ocean dynamics
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In the QG model, the stream function
1 captures the large-scale flow, and
we obtain the ocean velocities by
taking spatial derivatives of 1y .
Because velocities drive ice motion,
we assimilate the stream function
directly into our framework - its use
makes extracting and updating
velocity fields straightforward.

Fourier neural operator

A Fourier Neural Operator (FNO) [3] is a deep learning architecture that learns the
underlying mapping between flow fields in the frequency domain, enabling rapid, data-driven
predictions and seamless generalization across resolutions, even when deployed at grid
sizes different from those seen during training.

 (Classical neural networks — discretize and learn:
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Architecture of Fourier neural operator:
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Nudging data assimilation

To fuse model forecasts and real-world measurements (x,,s), we use a nudging
data-assimilation [4] to update the system state:

5.6\ = F(f) — K[I()’C\) — I(xobs)],

in each cycle, the model forecast F(x) captures the system’s dynamics (X), then the term
k[1(x) —I(x,ps)] corrects any mismatch with the real observations, where k is a scalar
relaxation parameter and I is interpolation operator (if data is not fully observed). While F
can be implemented as a classical QG solver, we propose using a Fourier Neural Operator
instead: it learns the underlying flow dynamics from data, delivers rapid inference, and
seamlessly generalizes across grid resolutions, making real-time sea-ice trajectory
forecasting both accurate and computationally efficient.
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Results

Example of output for the proposed system:
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Comparison of relative error for FNO and QG solver for 60 timesteps (360 hours):
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Final system show speed up compared to physical solver (compared on 60 timesteps):
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Conclusion & future work

For FNO, accuracy degrades from 8% to 12% compared to GQ solver on tested
trajectories but at the same time provides huge speed up (up to 700 times on large
domains), which makes the developed data assimilation system a suitable choice for real-
time navigation problems.

Future work: develop interpolation methods to handle missing or partial observations and
seamlessly integrate them into our nudging data-assimilation framework.
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