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Basin-scale internal waves are an important driver of transport within Radial structure of eigenmodes & EOFs at maximally stratified depth (z)
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lakes. Our goals are to model basin-scale waves within lakes, such as
Crater Lake in Figure 1, and to compare analytically obtained solutions Cormb
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Figure 4: Plot of the radial structure of the first 6 EOFs (in blue) as well as the

Apply SVDS T 6 largest eigenfunctions from the separation of variables (in orange). Notably,
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(rXz)X(rXz) we see that our fifth EOF has consistently large oscillations which is not the
case for the analytic eigenfunctions.
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Figure 1: A photograph of Crater Lake <«—Spatial Dim (n x r)—> <—Spatial Dim (n x r)—>
astronaut member of the Expedition 52 crew aboard the ISS [1].
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A model for the forced, linear, inviscid internal wave equation with the 0 9 - f the sinocular value ) approximate

Boussinesq approximation for the vertical velocity, w, is given by:

Z the centred original data:
8, V2w + N2V2 = F the centred original data

Where Vi is the horizontal component of the Laplacian and

F := 0,V* F where F acts on the vertical momentum. In addition to Time — _ T
this, we imposed radial-symmetry of our solutions. Importantly, this Number of EOFs N Value

model is non-homogeneous & accounts for non-uniform stratification. - rﬂ j.ll'l Figure §: Plot of the [, error at each time for a varying number of EOFs (left)
o — — and a log plot of the first 60 singular values, o (right). This figure demonstrates
We solved the equation in l0g10 [(9, Zmn)v2(2)| With ¢ = Z11(2) | <«—Spatial Dim (nx r)—> <«—Spatial Dim (nx r)—> the effectiveness of the EOFs to reconstruct the original data with relatively few

cylindrical coordinates using EV ‘ l . h - 1e ’ f h S 10)0) 0 Xim ‘ i N terms and shows that the magnitude of the EOFs decreases rapidly.

separation of variables to .
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obtain the eigenfunctions.

N
(¢, ]

i
o

Moving forward, we aim to apply EOF analysis to field data to model
. and analyze basin-scale internal waves within real-world natural

environments. Additionally, we aim to apply our analysis to non-
linear equations such as the BBM equation or the Kuramoto-

2000 3000 6000 7000 8000 9000 Sivashinsky equation.
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Notably, our analytical
eigenfunctions did not
maintain orthogonality
between the vertical and radial
modes. As seen in Figure 2,
even when resonantly forcing
our 1,1-mode, we get non-zero
inner products in mixed modes.

vertical mode number m
N N
o (6)]

—_
(631

References

10 20 30 40 50 60 70
radial mode number n

Figure 2: Log plot of the weighted inner
product of the 1,1-mode with the n,m-modes.
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The lack of orthogonality between vertical and radial modes
motivated us to apply Empirical Orthogonal Function (EOF) analysis - | |

a data-driven dimension reduction technique that constructs an ™ | o ACkn OWled gements
optimal orthogonal basis which captures the most variance of the data
[2]. We then wanted to compare the performance of the EOFs to that
of the analytical solutions obtained by our separation of variables.
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Figure 3: The analytic solution (top panel), the 10 and 20 term EOF approximations (left panels), as well as
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