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• Question: Can we create a model of water temperature under partial ice cover that gives 
reasonable results while only using basic physics principles?

Model

• Sunlight is mostly absorbed by open water and reflected by ice, so open water warms more 
easily than ice covered water

• Partial ice cover could become more prevalent in northern lakes due to a warming climate

• These nonuniform surface properties can cause neighbouring zones of ice cover and open 
water to be different temperatures
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• Conversely, water emits much more heat than ice, so it loses heat more quickly

• Due to water’s nonlinear equation of state, this temperature difference can cause mixing 
between the two regions
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Results
1. Constant Insolation

Results for only linear heat 
transport: not much mixing for small 

values of k!
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Results for only nonlinear heat 
transport: strong mixing with very small 

values of k3! 
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Temperatures 
continue to 
drop past 
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When water drops below the freezing level, we switch its emissivity to be equal to the emissivity of ice! 

• Can achieve reasonable results for temperature under partial ice cover with a simple model 

Conclusions

• Nonlinear heat transport may be necessary to integrate strong mixing into the model 
• Day cycle results show a need for emissivity values to reflect state changes (i.e., water 

freezing)

2. Day-Night Cycle


