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Module Overview

The course contains six training modules with an aim to provide
students with an understanding of how earth system models (ESMs) are
used to simulate Earth’s climate, sources of uncertainty in the climate
system, and how we can make use of machine learning (ML), and

Module 3: Model Intercomparisons and Future Climate
Scenarios

Learning Outcomes:

1. Explain the concepts of climate sensitivity, radiative forcing and
climate feedbacks
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Module 5: Role of Al in Climate Modeling: Statistical
Emulation

Learning Outcomes:

1. Understand what a perturbed parameter ensemble 1s, and how they
can be used to reduce uncertainty 1n model physics

artificial intelligence (Al) to reduce those uncertainties. Each module
will allow students to develop an understanding of the theory, and then
apply this knowledge 1n laboratory exercises, using data from ESMs.

. Describe what the Coupled Model Intercomparison Project (CMIP)

1s and 1ts purpose

. Understand what future emission scenarios are and how they are

2. Explain how ML based approaches can be used to calibrate model

parameters

Earth's climate system is So we have included more and

Module 1: A Brief Introduction to Earth System Models

Learning Outcomes:

1.
2.

Understand the complexities of earth’s mean climate and variability

Identify the main components of a climate model and how Earth’s
climate 1s represented 1n them

. Appreciate the range of Earth System Model configurations and their
application

. Understand why the members of an ensemble of Earth System
Models differ
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Figure 1. A comparison of a climate model and a satellite image of Earth (adapted from
Kotamarthi et al., 2021).

Lab Exercise: Reflection exercise on conceptual and numerical
models you rely on in your daily life. Consider the assumptions
behind these models, and why they are useful to you.

Module 2: How Well Do ESMs Represent The Present Day

Learning Outcomes:

Climate?

1. Develop an understanding of the metrics of climate model

performance

2. Quantify model performance of temperature and precipitation over

the recent past

3. Understand how and why spatial and temporal scale affects model

performance

Comparison of latest climate models to observations

New Climate Models (CMIP6)
- Models screened by their transient climate response
- Surface Temperature Observations (GISTEMP)
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Figure 2. CMIP6 model estimates of global mean surface temperature anomalies relative to the
1980-1999 mean, as compared with GISTEMP (from Schmidt, 2025).

Lab Exercise: Quantify differences in the temperature and precipitation
from ESMs and observations and discuss what aspects of the observed
climate models capture well, and what aspects remain a challenge.

developed

4. Explain the differences between predictions, forecasts and
projections
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Figure 3. Future emissions of CO2 across five
different Shared Socioeconomic Pathways

(SSPs) (from IPCC, 2021).

Figure 4. Global mean surface air temperature

change for the different SSP scenarios (from Lee et
al., 2021).

Lab Exercise: Create timeseries of emissions from different
Representative Concentration Pathway (RCP) and Shared
Socioeconomic Pathway (SSP) scenarios and quantify differences
between the different scenarios.

Module 4: Quantifying Uncertainty in Climate Simulations

Learning Outcomes:

1. Explain the concepts of internal climate variability, model
uncertainty and scenario uncertainty and how they contribute to
uncertainty in future climate projections

2. Be able to select the appropriate type of model ensemble for
quantifying uncertainty

3. Apply statistical methods to quantify different sources of uncertainty

4. Understand how emergent constraints can be used to reduce
uncertainties 1n future climate projections
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Figure 5. The relative importance of the three sources of uncertainty (internal variability, model
uncertainty and scenario uncertainty in long-term projections of (a) global mean surface air
temperature, and (b) regionally-averaged dynamic sea level (from Yin, 2015).

Lab Exercise: Create a Hawkins and Sutton (2009) type figure to
quantify the relative contributions of uncertainty from internal
variability, scenario uncertainty and model uncertainty for global
mean surface air temperature and precipitation. Discuss how these
differ by variable and over time.

This makes the model difficult to interpret.
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Figure 6. A comic outlining the motivation for and methodology surrounding statistical emulation
of cloud microphysics in the ECHAM-HAM climate model (from Proske et al., 2023).

Lab Exercise: Explore the impact of perturbed parameter ensemble
experiments on Earth’s climate sensitivity using a Gregory et al. (2004)
type regression and output from statistical emulations of the CESM?2
model.

Module 6: Role of Al in Climate Modeling: Physical
Parameterization

Learning Outcomes:

1. Explain how structural uncertainty differs from parametric
uncertainty in climate models

2. Understand the causes of structural uncertainty and approaches to its
quantification

3. Become familiar with examples of physical parameterizations being
replaced by Al models in ESMs

(a) NN cloud cover (b) Ground Truth

Figure 7. Comparison of cloud cover from a neural network (NN) compared with ground truth
data (from Grundner et al., 2022) .

Lab Exercise: Compare the performance of CMIP6 model
precipitation globally, and over tropical regions with that of a model
which incorporates Al-based cloud parameterization schemes.
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