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The course contains six training modules with an aim to provide 

students with an understanding of how earth system models (ESMs) are 

used to simulate Earth’s climate, sources of uncertainty in the climate 

system, and how we can make use of machine learning (ML), and 

artificial intelligence (AI) to reduce those uncertainties. Each module 

will allow students to develop an understanding of the theory, and then 

apply this knowledge in laboratory exercises, using data from ESMs.

Module Overview

Learning Outcomes:

1. Explain the concepts of climate sensitivity, radiative forcing and 

climate feedbacks 

2. Describe what the Coupled Model Intercomparison Project (CMIP) 

is and its purpose 

3. Understand what future emission scenarios are and how they are 

developed

4. Explain the differences between predictions, forecasts and 

projections

Module 3: Model Intercomparisons and Future Climate 
Scenarios

Learning Outcomes:

1. Develop an understanding of the metrics of climate model 

performance

2. Quantify model performance of temperature and precipitation over 

the recent past

3. Understand how and why spatial and temporal scale affects model 

performance

Module 2: How Well Do ESMs Represent The Present Day
Climate?

Module 5: Role of AI in Climate Modeling: Statistical 
Emulation

Learning Outcomes:

1. Understand what a perturbed parameter ensemble is, and how they 

can be used to reduce uncertainty in model physics

2. Explain how ML based approaches can be used to calibrate model 

parameters
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Learning Outcomes:

1. Understand the complexities of earth’s mean climate and variability

2. Identify the main components of a climate model and how Earth’s 

climate is represented in them

3. Appreciate the range of Earth System Model configurations and their 

application

4. Understand why the members of an ensemble of Earth System 

Models differ

Module 1: A Brief Introduction to Earth System Models

Figure 1. A comparison of a climate model and a satellite image of Earth (adapted from 

Kotamarthi et al., 2021).

Lab Exercise: Reflection exercise on conceptual and numerical 

models you rely on in your daily life. Consider the assumptions 

behind these models, and why they are useful to you.    

Figure 2. CMIP6 model estimates of global mean surface temperature anomalies relative to the 

1980-1999 mean, as compared with GISTEMP (from Schmidt, 2025).

Lab Exercise: Quantify differences in the temperature and precipitation 

from ESMs and observations and discuss what aspects of the observed 

climate models capture well, and what aspects remain a challenge. 

Figure 3. Future emissions of CO2 across five 

different Shared Socioeconomic Pathways 

(SSPs) (from IPCC, 2021). 

Lab Exercise: Create timeseries of emissions from different 

Representative Concentration Pathway (RCP) and Shared 

Socioeconomic Pathway (SSP) scenarios and quantify differences 

between the different scenarios.

Learning Outcomes:

1. Explain the concepts of internal climate variability, model 

uncertainty and scenario uncertainty and how they contribute to 

uncertainty in future climate projections

2. Be able to select the appropriate type of model ensemble for 

quantifying uncertainty

3. Apply statistical methods to quantify different sources of uncertainty

4. Understand how emergent constraints can be used to reduce 

uncertainties in future climate projections

Module 4: Quantifying Uncertainty in Climate Simulations

Figure 5. The relative importance of the three sources of uncertainty (internal variability, model 

uncertainty and scenario uncertainty in long-term projections of (a) global mean surface air 

temperature, and (b) regionally-averaged dynamic sea level (from Yin, 2015). 

Lab Exercise: Create a Hawkins and Sutton (2009) type figure to 

quantify the relative contributions of uncertainty from internal 

variability, scenario uncertainty and model uncertainty for global 

mean surface air temperature and precipitation. Discuss how these 

differ by variable and over time.

Lab Exercise: Explore the impact of perturbed parameter ensemble 

experiments on Earth’s climate sensitivity using a Gregory et al. (2004) 

type regression and output from statistical emulations of the CESM2 

model.  

Module 6: Role of AI in Climate Modeling: Physical 
Parameterization

Learning Outcomes:

1. Explain how structural uncertainty differs from parametric 

uncertainty in climate models

2. Understand the causes of structural uncertainty and approaches to its 

quantification

3. Become familiar with examples of physical parameterizations being 

replaced by AI models in ESMs

Figure 7. Comparison of cloud cover from a neural network (NN) compared with ground truth 

data (from Grundner et al., 2022) .

Lab Exercise: Compare the performance of CMIP6 model 

precipitation globally, and over tropical regions with that of a model 

which incorporates AI-based cloud parameterization schemes. 

Figure 6. A comic outlining the motivation for and methodology surrounding statistical emulation 

of cloud microphysics in the ECHAM-HAM climate model (from Proske et al., 2023). 

Figure 4. Global mean surface air temperature 

change for the different SSP scenarios (from Lee et 

al., 2021). 
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