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Time-evolution of total pKE (fixed domain with no energy transfer through 
boundaries, by analogy with Pedlosky [3]):

(5)

Wind-to-water momentum transfer 
maintains sheared flow in the gyre, 
balanced by bowl-shaped isopycnal 
surfaces.
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Linear stability computations

Primitive equations and linearization
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Sources of perturbation kinetic energy (pKE)
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II. Decompose primitive fields into 
steady background fields and evolving 
perturbation fields: 
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III. Motivated by the Beaufort Gyre, 
assume an azimuthal background flow 
in geostrophic and hydrostatic balance. 
In cylindrical coordinates,
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IV. Linearize (1) around background state (3) and assume a normal-mode solution:

(4)

This yields a generalized eigenvalue problem with generalized eigenvalue ck.
● Generalized eigenvectors are spatial structures of perturbation modes
● The product ckk = ⍵ determines:

○ Phase speed (Re{⍵}) of the kth mode
○ Temporal growth rate (Im{⍵}) of the kth mode

Motivation: Beaufort Gyre energetics

Fig. 1: Schematic of Arctic Ocean circulation. 
From [1].

I. Assumptions:
● L, H are much smaller than planetary 

radius [2]
● Boussinesq approximation (density 

fluctuations are small)
● No thermodynamic buoyancy sources
● Inviscid limit

Fig. 2: Schematic of Beaufort Gyre’s radial and 
vertical structure. Colours represent 

alternating temperatures of water masses 
(blue – cold; red – warm). Black lines represent 
isopycnals (buoyancy contours). Length scales 
L ~ 500 km and H ~ 500 m are labelled. Flow 

velocity is perpendicular to the page and 
clockwise as viewed from above the gyre.

Per Rayleigh’s theorems, our idealization of the Beaufort Gyre’s background flow is 
susceptible to development of both barotropic and baroclinic instabilities [4].

Comparison with nonlinear simulations
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   (i) APE of the perturbation is converted to pKE
  (ii) Barotropic-instability term: KE associated with horizontal 
        shear of background flow is transferred to the perturbation
 (iii) Baroclinic-instability term: APE associated with vertical 
        shear of background flow is converted to pKE

(i)                           (ii)                                (iii)

● Bu >> 1: expect pKE to grow mainly by 
barotropic instability [5]

● Bu << 1: expect pKE to grow mainly by 
baroclinic instability [5]

A relevant dimensionless parameter is 
the Burger number:

(6)
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Beaufort Gyre: A region of wind-driven circulation in the Arctic Ocean. 

Salinity sets Arctic water density, allowing warm water to remain at depth.
● Concave isopycnals signify available potential energy (APE): potential energy 

that is available for conversion into other forms of energy

Strong, stable background stratification inhibits vertical motion.
● If the gyre’s velocity profile is dynamically unstable, small perturbations may 

amplify until nonlinear saturation occurs
○ Nonlinear interactions produce turbulent eddies that weaken the gyre’s 

stratification; vertical transports (e.g., of warm water) become more 
energetically accessible

We evolve the nonlinear primitive equations (1) using the Oceananigans.jl library for 
finite-volume ocean simulations [6].

● Numerically diffusive, 5th-order upwinding advection scheme
● Random initial perturbation is added to balanced background flow

Simulation output shows pronounced exponential growth in primitive fields and 
evidence of subsequent nonlinear saturation.

● Simulation requires an unrealistically large domain (1000 km x 1000 km in the 
horizontal) to accommodate fastest-growing mode (see Fig. 4)

Fig. 4 (below): Cross-section of real part of fastest-
growing computed streamfunction for each of k = 1, 2.

We use numerical methods for eigenvalue 
computation (following Storer et al. [5]) to obtain 
the spectrum of the generalized eigenvalue 
problem (4) for an idealized gyre-like background 
state.

Our preliminary computations:
● Solve the linearized quasi-geostrophic (QG) 

equations
○ Computationally lighter: solve only for 

streamfunction ψ, instead of 5 primitive 
variables

● Use constant background N2 and U(r, z) = 
U(r)
○ Reduces dimensionality: assumes modal 

structure in z as well, so eigenvectors 
depend on r only

● Have Bu = 2.5 x 10-3

Fig. 5: ℓ2-norms of 
horizontal-
velocity components 
during initial 50 days 
of simulation time. 

● Further investigate discrepancies between empirical growth rates and 
growth rates obtained from linear stability computations

● Compute contributions to pKE budget, equation (5)
● Account for realistic stratification in linear stability computations and 

nonlinear simulations; solve both for a baroclinic background state
● Complete linear stability computations for full primitive equations

○ Relaxing the QG assumptions will allow us to study instabilities on a wider 
range of spatial scales

● Incorporate effects of dynamical surface forcing by winds and sea ice into 
nonlinear simulation

Future work

Consistent with published 
linear stability analyses (e.g., 
[4, 5]), k = 1, 2 have unstable 
modes.
● Fastest growth with k = 1 

is for a baroclinic mode: 
periodic with depth

● Fastest growth with k = 2 
is for barotropic mode: 
constant with depth
○ This mode is less 

radially confined than 
the former

Fig. 3 (above): Computed growth 
rates for k = 1, 2, plotted against 
vertical wavenumber.

Least-squares fits of the (logarithm of) the above norms, during the regime of 
exponential growth, to linear functions, reveal empirical growth rates on the order of 
10-6 s-1 for both ur’ and uᵩ’.

● Our linear stability computations underestimate the maximum growth rate of 
the perturbation in our nonlinear simulation


